Mechanical Engineering - BEng (Hons)

2025/26 Full-time Undergraduate course

Award:

Bachelor of Engineering with Honours

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Engineering

Campus:

Belfast campus

UCAS code:

H300
The UCAS code for Ulster University is U20

Start date:

September 2025

With this degree you could become:

  • Aerospace Design Engineer
  • Design Engineer
  • Manufacturing Systems Engineer
  • Operations Manager
  • Product Improvement Engineer
  • Project Engineer
  • Quality Engineer

Graduates from this course are now working for:

  • Bombardier Aerospace
  • CDE Global
  • Fleming Agri Products
  • Hutchinson Engineering
  • JW Kane Precision Engineering Ltd.
  • Randox Laboratories
  • Thompson Aero Seating

Overview

Mechanical engineers design, create and analyse moving things, solving 21st century problems and shaping the next generation of technology.

Summary

Mechanical engineers create, design and manufacture all kinds of products and processes across a wide range of industries. From automotive to medical devices, aerospace to renewable energy, or materials processing to mobile phones, mechanical engineers are involved at all stages of the product life cycle.

This BEng course will prepare you for a career that is both challenging and rewarding. There is an emphasis on individual and team projects, giving you the opportunity for hands-on involvement and an understanding of engineering materials, processes, devices and systems. Analytical and communication skills are developed with an emphasis on computer-aided design (CAD) and computer-aided manufacture (CAM). The skills and knowledge acquired are applied to a wide range of real-life engineering problems.

Through a wide range of learning experiences you will develop the intellectual, technical and professional skills that are needed to address 21st century challenges in industry and society. Themes of Design, Mechanical Systems, Materials and Manufacturing run through the course and are further developed through group and individual project work, practical and computer labs, and a range of specialist research-led modules, preparing you for both your industrial placement year and your future career.

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

This course has been designed with the aid of industry to address their needs and the needs of the economy. The BEng (Hons) in Mechanical Engineering is accredited by the IMechE and the IET and with accredited further study will enable you to become a Chartered Engineer.

The third year of this course is spent on placement in industry – and successful completion of the Placement year leads to a Diploma in Professional Practice (DPP) which is awarded at Graduation

Students on the BEng programme can transfer to the MEng in Mechanical Engineering provided that they have obtained an average of at least 60% in year 2.

Associate awards

Diploma in Professional Practice DPP

Diploma in Professional Practice International DPPI

Diploma in International Academic Studies DIAS

Attendance

Typically 18 – 20 hours per week class contact time between 9.15 am and 6.05 pm. There are no timetabled activities on Wednesday afternoons.

Start dates

  • September 2025

Teaching, Learning and Assessment

Programmes employ a broad range of teaching and assessment styles and place an emphasis on practical demonstrations and on interactive learning opportunities including project-based and group-based activities. The course combines traditional lectures, tutorials and laboratory based classes with technology facilitated resources and activities.

The programme uses a wide range of assessment methods including formal examinations, seen and unseen problems in class tests, on-line multiple-choice assessments, laboratory reports, projects, poster sessions, oral presentations, and peer assessment, where group project work is involved.

Attendance and Independent Study

The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.

Each course is approved by the University and meets the expectations of:

  • Attendance and Independent Study

    As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.

    Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10, 20, or 40 credit modules (more usually 20) and postgraduate courses typically 15 or 30 credit modules.

    The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Teaching and learning activities will be in-person and/or online depending on the nature of the course. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.

    Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.

    Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.

  • Assessment

    Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes.  You can expect to receive timely feedback on all coursework assessments. This feedback may be issued individually and/or issued to the group and you will be encouraged to act on this feedback for your own development.

    Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification, the assessment timetable and the assessment brief. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

    Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised. The module pass mark for undergraduate courses is 40%. The module pass mark for postgraduate courses is 50%.

  • Calculation of the Final Award

    The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).

    Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.

    All other qualifications have an overall grade determined by results in modules from the final level of study.

    In Masters degrees of more than 200 credit points the final 120 points usually determine the overall grading.

    Figures from the academic year 2022-2023.

Academic profile

The University employs over 1,000 suitably qualified and experienced academic staff - 60% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (19%), Readers, Senior Lecturers (22%) or Lecturers (57%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic and learning support staff (85%) are recognised as fellows of the Higher Education Academy (HEA) by Advance HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures from the academic year 2022-2023.

Belfast campus

Accommodation

High quality apartment living in Belfast city centre adjacent to the university campus.

Find out more - information about accommodation (Opens in a new window)  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing (Opens in a new window)  

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

Year one

Engineering Mathematics

Year: 1

This module provides an understanding of the language and terminology of mathematics, together with the mathematical techniques from algebra, calculus and statistics that are necessary for the description and analysis of engineering systems.

Design and CAE 1

Year: 1

This module provides an introduction to the fundamentals in the use of a modern 3D CAD system to create robust 3D part modules using an introductory range of feature types. This module provides an introduction to product design specification, design, build and analysis/testing of a product as part of a design project, working as part of a team.

Mechanical Systems & Analysis 1

Year: 1

Analysis of statics and dynamics systems are a key foundation for mechanical and mechatronic engineers. This module provides fundamental concepts and principles in order to solve static and dynamics problems, and gives a solid methodology and framework in order to tackle new and unfamiliar problems.

Its content includes: Basic and derived units, static equilibrium, statically stressed systems, theory of torsion and bending, kinematics of a particle and kinetics of a particle. Those theoretical and practical principles required within each topic area will be developed in lectures and applied in assignments and tutorials.

The Global Engineer

Year: 1

This module will introduce students to working in multidisciplinary teams to solve a real-world problem and present their solution to an audience of their tutors and peers.

Materials and Manufacturing 1

Year: 1

A module which integrates lectures with practical sessions in the study of the basics of common manufacturing methodologies and the behaviour of engineering materials. The student will consolidate their learning of the interaction among materials, manufacturing methods, quality and workshop safety. Production of a working electro-mechanical product will deepen knowledge and develop basic skills for selected manufacturing processes. Candidates will critique their work to improve the product design and select appropriate production processes for batch manufacture.

Fundamentals of Engineering and Technology

Year: 1

This module will introduce students to studying an Engineering programme at Ulster University
and will develop some of the foundational knowledge and skills that will enable them to succeed on their degree programme.

Year two

Design of Electro-Mechanical Systems

Year: 2

The understanding of electrical power systems, AC and DC motors including selection, performance and analysis; plus their relevance to mechanical drive systems.

Thermal Fluid Sciences

Year: 2

This module provides an introduction to the principles behind fluid mechanics and thermodynamics. Emphasis is placed on the application of this theory to everyday items, ranging from relatively simple devices such as pumps, pipes, bicycles, refrigerators and heating systems through to internal combustion engines, hydroelectric power stations, gas turbines and steam engines.

An understanding of how fluids flow, and the forces that result, along with knowledge of energy and how it can be transformed and made more useful are the intended outcomes of this module. It will enable students to continue their study of thermal fluid sciences at a higher level if desired.

Design and CAE 2

Year: 2

The module considers creativity in design; product innovation; technical and non-technical aspects of design; sustainability; design analysis techniques for economic product manufacture and assembly; functional analysis; visual design; value engineering; safety and reliability through design projects; manufacturing processes; assembly techniques; market intelligence; component and product inspection and testing. This module builds on the fundamentals of 3D solid part modelling with the introduction of more advanced solid modelling tools, assembly modelling, creation of 2D drawings and incorporation of all these tools and features within a design project, working as part of a team.

Materials and Manufacturing 2

Year: 2

The module uses a blended approach to provide a sound understanding of the underpinning chemistry and microstructure of metals, ceramics, polymers and composites. How materials properties are controlled by processing techniques and the environmental impact of materials is also considered. In addition, a programme of industrial visits exposes students to a wide variety of production scenarios and processes.

Quality and Operations

Year: 2

The module teaches the basics of Operations and Quality. The Operations elements looks at the processes that produce the goods and services sold by the company in addition to optimising facility location and layout. The module also teaches topics such as stock control and scheduling.

The Quality part of the module covers the relevance and application of Quality principles and techniques to the manufacturing environment. Discussion of current topics in Quality Management and Quality Improvement is supported by study of the fundamentals of ISO 9001, Statistical Process Control, Measurement System Analysis and Non-Destructive testing. This module prepares the student to contribute to these challenging activities in their early employment.

Mechanical Systems and Analysis 2

Year: 2

This module provides an extension of the fundamental principles of Dynamics and Statics and Strength of Materials in relation to mechanical engineering and provides a methodology for their practical application.

Year three

Industrial Placement

Year: 3

This module is optional

This module provides undergraduate students with an opportunity to gain structured and professional work experience, in a work-based learning environment, as part of their planned programme of study. This experience allows students to develop, refine and reflect on their key personal and professional skills. The placement should significantly support the development of the student's employability skills, preparation for final year and enhance their employability journey.

International Academic Studies

Year: 3

This module is optional

This module provides an opportunity to undertake an extended period of study outside the UK and Republic of Ireland. Students will develop an enhanced understanding of the academic discipline whilst generating educational and cultural networks.

Year four

Design and Industrial Applications

Year: 4

This module is based on the execution of an industrially generated major design project through multi-disciplinary team activity involving aspects of: project management, market analysis, specification, concept design, budget costing, decision making, detail design, production planning, sustainable manufacturing requirements and product costing.

Smart Manufacturing technologies

Year: 4

This module involves the technology of fixed automation; computer numerical control; materials handling; low cost automation; computer integrated manufacturing; industrial robot technology; robot applications; automated inspection and advanced robotics.

Mechanical Systems and Analysis 3

Year: 4

This course provides students with an understanding of how solid engineering respond to different types of loading factors. For this, theoretical and practical principles required in static, dynamic and FEA disciplines will be taught in lectures and applied in assignments, laboratory sessions and tutorials. These will allow students to assess and deliver a solution for a variety of practical mechanical systems.

Research Methods and Management

Year: 4

This Research Methods and Management module provides the student with a scaffolded learning experience on a series of pertinent engineering management topics including cyber-security and its mitigation, EDI issues and building inclusive teams, and project management tools and techniques. The reflective learning log will provide students with an opportunity to demonstrate their understanding of the impact of contemporary issues in the management of engineering projects and workplace practices. The written report will will be based on a comprehensive literature review/design study of the student's final year capstone project.

Students will be expected to manage and design the project in collaboration with their supervisor. They will be responsible for carrying out the project and writing up and presenting their work in the form of written submissions.

BEng Final Year Project

Year: 4

Each student taking this module will carry out an individual project on a topic relevant to their degree of study. Students will be expected to design the project in collaboration with a nominated supervisor. They will be responsible for carrying out the project and writing up results in the form of a final written report.

Functional Biomaterials

Year: 4

This module is optional

This module provides students with a detailed understanding of the composition, function and application of synthetic and natural biomaterials in the context of the medical implant devices they are used to fabricate. The approach taken highlights the important materials science issues involved in the provision of these systems. The increasing importance of functional biomaterials to the provision of enhanced medical implant devices that can more effectively replace damaged and/or diseased tissues and organs is also addressed.

Nanotechnology

Year: 4

This module is optional

This module gives the student an overview of nanotechnology and its applications in engineering.

Environmental Engineering

Year: 4

This module is optional

This module introduces environmental issues, key aspects and provides coverage of science, technology, design, regulations and management systems pertaining to environmental protection, resource conservation and alternative energy sources.

Advanced CAE

Year: 4

This module is optional

This module provides a practical, hands-on experience of Computer Aided Engineering in the context of industrial design and manufacturing. It focuses on advanced part modelling techniques, assembly modelling, creating associative links, good modelling practice, collaboration and interoperability, design documentation, 3D printing, surface modelling, photorealistic rendering, dynamic simulation and Finite Element Analysis. It involves the utilisation of an integrated, state-of-the-art MCAD suite, along with the teaching of the general principles of the aforementioned technologies.

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

A level

BBC to include Grade B in one from Mathematics, Further Mathematics, Physics, Chemistry, Technology & Design, Design & Technology, Engineering, Electronics or Double Award Science/Applied Science. If presenting only Design and Technology, please contact the administrator listed in the Contact details section below.

OR

BCC to include one from Mathematics, Further Mathematics or Physics.

See the GCSE subject and grade requirements below, including specific Mathematics grade required depending on the GCE A level subject presented.

Applied General Qualifications

RQF Pearson BTEC Level 3 National Extended Diploma in Engineering (601/7588/6) with overall award profile DMM to include Merit in Engineering Principles.

A Levels with;
RQF Pearson BTEC Level 3 National Extended Certificate (601/7584/9) Note: The RQF Pearson BTEC Level 3 National Extended Certificate in Engineering will satisfy the subject requirement as long as it include Merit in Engineering Principles.

RQF Pearson BTEC Level 3 National Diploma (601/7580/1) Note: The RQF Pearson BTEC Level 3 National Diploma in Engineering will satisfy the subject requirement as long as it includes Merit in Engineering Principles.

RQF Pearson BTEC Level 3 National Foundation Diploma does not satisfy the subject requirement for this course and will only be considered when presented with an A Level in one of the specified subjects;

The A level(s) and/or the BTEC qualification(s) must be in the specified subject(s) and must have the required modules.

OCR Nationals and Cambridge Technical Combinations;
Do not satisfy the subject entry requirement for this course and will be accepted as grade only when presented with A levels in the relevant subject(s).

To find out if the qualification you are applying with is a qualification we accept for entry, please check our Qualification Checker - our Equivalence Entry Checker.

We will also continue to accept QCF versions of these qualifications although grades asked for may differ. Check what grades you will be asked for by comparing the requirements above with the information under QCF in the Applied General and Tech Level Qualifications section of our Entry Requirements - View our Undergraduate Entry Requirements

​​Entry equivalences can also be viewed in the online prospectus at our Equivalence Entry Checker..

Irish Leaving Certificate

112 UCAS Tariff points to include a minimum of five subjects (four of which must be at Higher Level) to include English at H6 if studied at Higher Level or O4 if studied at Ordinary Level.

Higher Level subjects must include Mathematics at minimum Grade H5 and one other HL subject at minimum Grade H6 from Physics, Chemistry, Physics/Chemistry, Biology, Technology or Engineering, Technology & Design.

Irish Leaving Certificate UCAS Equivalency

Scottish Highers

Grades BBCCC (to include minimum of BB in Mathematics and a science subject).

Scottish Advanced Highers

Grades CCD (to include Mathematics and a science subject).

International Baccalaureate

Overall Profile is a minimum of 25 points to include 12 at Higher Level and to include minimum grade 5 in Mathematics and another Higher Level Science subject. Grade 4 in English Language also required in overall profile.

Access to Higher Education (HE)

Overall profile of 63% and 63% in NICATS Mathematics module (Level 2) in an Engineering/Science/Technology (120 credit Access course) (NI Access Course).

Overall profile of 15 credits at Distinction and 30 credits at Merit in an Engineering/Science/Technology (60 credit Access Course) (GB Access Course). GCSE pass at Grade C/4 or above in Mathematics is also required.

Alternative Mathematics qualifications acceptable to the University will be considered for the Mathematics requirement.

Other Access courses considered individually, please contact the administrator as listed in the Contact details section.

our Equivalence Entry Checker..

GCSE

For full-time study, you must satisfy the General Entrance Requirements for admission to a first degree course and hold a GCSE pass at Grade C/4 or above in English Language.

GCSE pass Grade A/7 in Mathematics (or an alternative Mathematics qualification acceptable to the University) if offering only GCE A Level Technology and Design, Engineering, or Electronics as the specified subjects otherwise GCSE Mathematics Grade C/4 (or an alternative Mathematics qualification acceptable to the University) is required.

Level 2 Certificate in Essential Skills - Communication will be accepted as equivalent to GCSE English.

Please note that for purposes of entry to this course the Level 2 Certificate in Essential Skills - Application of Number is NOT regarded as an acceptable alternative to GCSE Mathematics.

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Additional Entry Requirements

HNC

Pass HNC with overall Distinction in an Electrical, Electronic, Mechanical or Manufacturing Engineering subject for year 1 entry only. GCSE Maths Grade C/4 or an alternative Mathematics qualification acceptable to the University is also required.

HND Year one Entry

Pass HND in an Electrical, Electronic, Mechanical or Manufacturing Engineering subject. GCSE Maths Grade C/4 or an alternative Mathematics qualification acceptable to the University is also required.

HND Year Two Entry

Pass HND with overall Merit in an Mechanical or Manufacturing Engineering subject to include a Merit in either Level 4 or Level 5 Analytical Methods, Level 4 Engineering Maths or Level 5 Further Maths module. GCSE Maths Grade C/4 or an alternative Mathematics qualification acceptable to the University is also required.

Applicants may be considered for year 2 entry where the curriculum sufficiently matches that of Ulster University full time year 1 course.

Ulster Foundation Degree

Pass Foundation Degree in a relevant subject area with an overall mark of 50% and minimum 50% in all taught level 5 modules and 50% in the Level 4 Mathematics module within the Foundation Degree. GCSE Maths Grade C/4 or an alternative Mathematics qualification acceptable to the University is also required. Applicants will normally be considered for year 2 entry to the linked Honours degree.

For further information on the requirements for this course please contact
the administrator as listed in the Contact details section.

Entry equivalences can also be viewed in the online prospectus at our Equivalence Entry Checker..

The General Entry Requirements must also be met including English Language minimum GCSE grade C/4 (or equivalent). Please check the following link General Entry Requirements.

Exemptions and transferability

Students who have successfully completed studies equivalent in content and level to year 1 modules may be considered for direct entry to Year 2.

Students on the BEng Hons programme who obtain a year 2 average mark of at least 60% are eligible to transfer to the MEng programme. The transfer normally takes place at the end of the Placement year.

Careers & opportunities

Graduate employers

Graduates from this course are now working for:

  • Bombardier Aerospace
  • CDE Global
  • Fleming Agri Products
  • Hutchinson Engineering
  • JW Kane Precision Engineering Ltd.
  • Randox Laboratories
  • Thompson Aero Seating

Job roles

With this degree you could become:

  • Aerospace Design Engineer
  • Design Engineer
  • Manufacturing Systems Engineer
  • Operations Manager
  • Product Improvement Engineer
  • Project Engineer
  • Quality Engineer

Career options

Job prospects in a broad range of engineering industries are excellent with most graduates finding employment within six months of graduation. Graduates with an MEng or BEng Hons, first class or upper second class award satisfy the entry requirements for a wide range of postgraduate research posts and scholarships in mechanical engineering, engineering materials and manufacturing engineering.

Work placement / study abroad

The industrial placement year is a significant, formative period for our student mechanical engineers. Involvement in the practice of engineering in an industrial setting will develop your engineering, transferable and personal skills and significantly enhance your employability on graduation. All students are therefore required to undertake a (paid) industrial work placement - normally in year 3 of the programme.

Professional recognition

Institution of Engineering and Technology (IET)

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.

Institution of Mechanical Engineers (IMechE)

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.

Apply

Start dates

  • September 2025

Fees and funding

Scholarships, awards and prizes

Follow the links to the Faculty of Computing and Engineering

Ulster University Student Prizes

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Disclaimer

  1. The University endeavours to deliver courses and programmes of study in accordance with the description set out in this prospectus. The University’s prospectus is produced at the earliest possible date in order to provide maximum assistance to individuals considering applying for a course of study offered by the University. The University makes every effort to ensure that the information contained in the prospectus is accurate, but it is possible that some changes will occur between the date of printing and the start of the academic year to which it relates. Please note that the University’s website is the most up-to-date source of information regarding courses, campuses and facilities and we strongly recommend that you always visit the website before making any commitments.
  2. Although the University at all times endeavours to provide the programmes and services described, the University cannot guarantee the provision of any course or facility and the University may make variations to the contents or methods of delivery of courses, discontinue, merge or combine courses, change the campus at which they are provided and introduce new courses if such action is considered necessary by the University (acting reasonably). Not all such circumstances are entirely foreseeable but changes may be required if matters such as the following arise: industrial action interferes with the University’s ability to teach the course as planned, lack of demand makes a course economically unviable for the University, departure of key staff renders the University unable to deliver the course, changes in legislation or government policy including changes, if any, resulting from the UK departing the European Union, withdrawal or reduction of funding specifically provided for the course or other unforeseeable circumstances beyond the University’s reasonable control.
  3. If the University discontinues any courses, it will use its best endeavours to provide a suitable alternative course. In addition, courses may change during the course of study and in such circumstances the University will normally undertake a consultation process prior to any such changes being introduced and seek to ensure that no student is unreasonably prejudiced as a consequence of any such change.
  4. Providing the University has complied with the requirements of all applicable consumer protection laws, the University does not accept responsibility for the consequences of any modification, relocation or cancellation of any course, or part of a course, offered by the University. The University will give due and proper consideration to the effects thereof on individual students and take the steps necessary to minimise the impact of such effects on those affected. 5. The University is not liable for disruption to its provision of educational or other services caused by circumstances beyond its reasonable control providing it takes all reasonable steps to minimise the resultant disruption to such services.

Sustainability at Ulster

Ulster continues to develop and support sustainability initiatives with our staff, students, and external partners across various aspects of teaching, research, professional services operations, and governance.

At Ulster every person, course, research project, and professional service area on every campus either does or can contribute in some way towards the global sustainability and climate change agenda.

We are guided by both our University Strategy People, Place and Partnerships: Delivering Sustainable Futures for All and the UN Sustainable Development Goals.

Our work in this area is already being recognised globally.  Most recently by the 2024 Times Higher Education Impact rating where we were recognised as Joint 5th Globally for Outreach Activities and Joint Top 20 Globally for Sustainable Development Goal 17:  Partnership for the Goals.

Visit our Sustainability at Ulster destination to learn more about how the University strategy and the activities of Ulster University support each of the Sustainable Development Goals.