Renewable Energy Engineering - BEng (Hons)

2024/25 Part-time Undergraduate course

Award:

Bachelor of Engineering with Honours

Faculty:

Faculty of Computing, Engineering and the Built Environment

School:

School of Computing, Engineering and Intelligent Systems

Campus:

Derry~Londonderry campus

Start date:

September 2024

United Nations Sustainable Development Goals (SDGs)

United Nations Sustainable Development Goals (SDGs)

We are passionate about sharing with our students the vital role they each have now and as future professionals in promoting a sustainable future for all. We believe that sustainability is not the domain of one discipline or profession. It is the responsibility of all disciplines, professions, organisations and individuals.

That is why on each of our courses within the School of Computing, Engineering and Intelligent Systems you will learn about the UN Sustainable Development Goals and the contribution you can make now, and as a graduate in Computing or Engineering.

Read the course details below to find out more.

Overview

Create a more sustainable world with renewable energy engineering. Refine and rethink clean energy sources such as wind, biomass, solar, and hydro.

Summary

This 4 year BEng Hons course prepares students for work within the emerging renewable energy industry and will allow you to make a difference in the world. Graduates will join a body of engineers with the vision and skills necessary to design and manufacture engineering systems and machines for the renewables industry. You will learn how to think innovatively and turn your ideas into useable technology.

Graduates with this mix of mechanical design, electronics, power systems and renewable energy engineering experience have many career opportunities available to them in this emerging sector. The course has a built-in year of work experience, where students work in industry during their third year, making it a highly practical degree.

So whether you want to engineer the next generation of renewable power systems or drive change and create ‘green cities’ then this degree will give you the knowledge and skills to do so.

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.

About this course

About

This course is the part-time version of the BEng Renewable Energy Engineering degree and offers a flexible learning approach to study.

The duration of the course is in the range of four to seven years, depending on exemption from Level 4 and 5 modules (Years 1 and 2 of equivalent full-time course) and the rate of study.

On average students complete study at half the rate of a full-time student, completing 60 credits out of the 120 credits which make up each year of the equivalent full-time course. The maximum study load is 40 credits per semester.

The course includes modules in mathematics, electrical and mechanical science, materials and manufacturing, computer-aided design, electronic circuit design, electrical engineering, industrial management.

Attendance

Attendance is part-time, day-time and typically requires one full day or two half-days per week for 12 teaching weeks each semester. The attendance requirements may vary from semester to semester.

Start dates

  • September 2024

Teaching, Learning and Assessment

Formal lectures are supplemented by tutorials and laboratory investigations, as appropriate. Practical hands on laboratory sessions are an integral part of many modules throughout all years of the course. Case studies, groupwork and mini-projects are also extensively used. In the final year there is a major individual project.

Generally, a combination of continuous assessment and examination is employed in each module. Continuous assessment includes class tests, library and laboratory based assignments, and individual and group project work. Some modules across all years of the course are continuously assessed.

Attendance and Independent Study

The content for each course is summarised on the relevant course page, along with an overview of the modules that make up the course.

Each course is approved by the University and meets the expectations of:

  • Attendance and Independent Study

    As part of your course induction, you will be provided with details of the organisation and management of the course, including attendance and assessment requirements - usually in the form of a timetable. For full-time courses, the precise timetable for each semester is not confirmed until close to the start date and may be subject to some change in the early weeks as all courses settle into their planned patterns. For part-time courses which require attendance on particular days and times, an expectation of the days and periods of attendance will be included in the letter of offer. A course handbook is also made available.

    Courses comprise modules for which the notional effort involved is indicated by its credit rating. Each credit point represents 10 hours of student effort. Undergraduate courses typically contain 10, 20, or 40 credit modules (more usually 20) and postgraduate courses typically 15 or 30 credit modules.

    The normal study load expectation for an undergraduate full-time course of study in the standard academic year is 120 credit points. This amounts to around 36-42 hours of expected teaching and learning per week, inclusive of attendance requirements for lectures, seminars, tutorials, practical work, fieldwork or other scheduled classes, private study, and assessment. Teaching and learning activities will be in-person and/or online depending on the nature of the course. Part-time study load is the same as full-time pro-rata, with each credit point representing 10 hours of student effort.

    Postgraduate Master’s courses typically comprise 180 credits, taken in three semesters when studied full-time. A Postgraduate Certificate (PGCert) comprises 60 credits and can usually be completed on a part-time basis in one year. A 120-credit Postgraduate Diploma (PGDip) can usually be completed on a part-time basis in two years.

    Class contact times vary by course and type of module. Typically, for a module predominantly delivered through lectures you can expect at least 3 contact hours per week (lectures/seminars/tutorials). Laboratory classes often require a greater intensity of attendance in blocks. Some modules may combine lecture and laboratory. The precise model will depend on the course you apply for and may be subject to change from year to year for quality or enhancement reasons. Prospective students will be consulted about any significant changes.

  • Assessment

    Assessment methods vary and are defined explicitly in each module. Assessment can be a combination of examination and coursework but may also be only one of these methods. Assessment is designed to assess your achievement of the module’s stated learning outcomes.  You can expect to receive timely feedback on all coursework assessments. This feedback may be issued individually and/or issued to the group and you will be encouraged to act on this feedback for your own development.

    Coursework can take many forms, for example: essay, report, seminar paper, test, presentation, dissertation, design, artefacts, portfolio, journal, group work. The precise form and combination of assessment will depend on the course you apply for and the module. Details will be made available in advance through induction, the course handbook, the module specification, the assessment timetable and the assessment brief. The details are subject to change from year to year for quality or enhancement reasons. You will be consulted about any significant changes.

    Normally, a module will have 4 learning outcomes, and no more than 2 items of assessment. An item of assessment can comprise more than one task. The notional workload and the equivalence across types of assessment is standardised. The module pass mark for undergraduate courses is 40%. The module pass mark for postgraduate courses is 50%.

  • Calculation of the Final Award

    The class of Honours awarded in Bachelor’s degrees is usually determined by calculation of an aggregate mark based on performance across the modules at Levels 5 and 6, (which correspond to the second and third year of full-time attendance).

    Level 6 modules contribute 70% of the aggregate mark and Level 5 contributes 30% to the calculation of the class of the award. Classification of integrated Master’s degrees with Honours include a Level 7 component. The calculation in this case is: 50% Level 7, 30% Level 6, 20% Level 5. At least half the Level 5 modules must be studied at the University for Level 5 to be included in the calculation of the class.

    All other qualifications have an overall grade determined by results in modules from the final level of study.

    In Masters degrees of more than 200 credit points the final 120 points usually determine the overall grading.

    Figures from the academic year 2022-2023.

Academic profile

The University employs over 1,000 suitably qualified and experienced academic staff - 60% have PhDs in their subject field and many have professional body recognition.

Courses are taught by staff who are Professors (19%), Readers, Senior Lecturers (22%) or Lecturers (57%).

We require most academic staff to be qualified to teach in higher education: 82% hold either Postgraduate Certificates in Higher Education Practice or higher. Most academic and learning support staff (85%) are recognised as fellows of the Higher Education Academy (HEA) by Advance HE - the university sector professional body for teaching and learning. Many academic and technical staff hold other professional body designations related to their subject or scholarly practice.

The profiles of many academic staff can be found on the University’s departmental websites and give a detailed insight into the range of staffing and expertise.  The precise staffing for a course will depend on the department(s) involved and the availability and management of staff.  This is subject to change annually and is confirmed in the timetable issued at the start of the course.

Occasionally, teaching may be supplemented by suitably qualified part-time staff (usually qualified researchers) and specialist guest lecturers. In these cases, all staff are inducted, mostly through our staff development programme ‘First Steps to Teaching’. In some cases, usually for provision in one of our out-centres, Recognised University Teachers are involved, supported by the University in suitable professional development for teaching.

Figures from the academic year 2022-2023.

Derry~Londonderry campus

Accommodation

Enjoy student life in one of Europe's most vibrant cities.

Find out more - information about accommodation (Opens in a new window)  


Sports Facilities

Our facilities in Derry~Londonderry cater for many sports ranging from archery to volleyball, and are open to students and members of the public all year round.

Find out more - information about sport (Opens in a new window)  


Student Wellbeing

At Student Wellbeing we provide many services to help students through their time at Ulster University.

Find out more - information about student wellbeing (Opens in a new window)  

Modules

Here is a guide to the subjects studied on this course.

Courses are continually reviewed to take advantage of new teaching approaches and developments in research, industry and the professions. Please be aware that modules may change for your year of entry. The exact modules available and their order may vary depending on course updates, staff availability, timetabling and student demand. Please contact the course team for the most up to date module list.

Year one

Mathematics for Engineering I

Year: 1

This module provides students with a solid foundation in the fundamental topics in engineering mathematics. The material develops the student's competencies in the essential mathematics that forms an integral part of an undergraduate honours degree in engineering related disciplines.

Introduction to Renewable Energy

Year: 1

The module provides a firm grounding in energy conversion through fundamental theory demonstrated in the analysis of conventional and renewable energy conversion systems.

Design and CAD I

Year: 1

This module includes freehand sketching, systems of projection, drawing conventions,
dimensioning and tolerancing, 3-D digital modelling of parts and assemblies, design
documentation, an introduction to the total design activity, formulation of a product design
specification (PDS), material selection and manufacturing considerations in design

Manufacturing Processes

Year: 1

A module which integrates formal study with a significant practical programme for the understanding and application of common manufacturing processes.

Year two

Circuit Analysis I

Year: 2

This module provides an introduction to the key electronic components, the basic concepts of electronic circuit design and the basic principles of electronic circuit testing and measurement taking. This module introduces the student to analogue electronics principles presented using a combination of lectures, tutorials and practical laboratories and are assessed using continuous assessment in the form of a class test and lab practical assessments.

Intro to Statics and Dynamics

Year: 2

MEC102 provides the fundamental principles of statics, strength of materials and dynamics in relation to mechanical engineering and provides a methodology for their practical application. Its content includes:

(a) Basic and derived units, static equilibrium, shear forces, bending moments and friction.

(b) Statically stressed systems both determinate and indeterminate, the theory of torsion and bending.

(c) This module provides an understanding of dynamics, and its application to the solution of engineering problems.

(d) The theoretical and practical principles required within each topic area will be developed in lectures and applied in assignments, tests and tutorials.

Year three

Professional Development

Year: 3

This module is designed to equip students with the appropriate research and transferable skills needed to secure employment within the Computing and Engineering domain.

The module prepares students for professional work by developing knowledge of the responsibilities and obligations of employees, employers and clients as determined by codes of professional conduct. Students will have the opportunity to practise the presentation of themselves in, for example, application forms, curriculum vitae, interview, elevator pitches and aptitude tests.

The module provides an underpinning foundation of research concepts, methods and techniques necessary for project development and delivery. The students employ research skills developed during the module to gather research from a variety of sources and critically review this literature. Embedded in all these activities is the reinforcement of the need for adhering to recognised ethical standards and taking a professional approach to employability.

Engineering of Control Systems and Signals

Year: 3

This level 5 module will endow engineering students with the knowledge and skills to analyse and design control systems and signal processing systems.

Power Systems Analysis

Year: 3

Building on the fundamentals covered in ENE123 (EEE186 Magee), the aim is to develop design skills in the technologies and energy engineering involved with electricity generation, its supply, distribution and end use of electricity, both in a domestic and industrial context.

Materials

Year: 3

The module provides a general coverage of different classes of engineering materials. Metallic and non-metallic materials are studied with respect to structures, properties, and processing.

Year four

Statics and Dynamics II

Year: 4

MEC360 provides an extension of the fundamental principles of the statics and dynamics of mechanical systems in relation to the analysis and solution of mechanical engineering problems. Furthermore, MEC360 provides an introduction to the core principles of thermodynamics.

Design and CAE 2

Year: 4

The module considers creativity in design; product innovation; technical and non-technical
aspects of design; safety and product liability; design analysis techniques for economic
product manufacture and assembly; functional analysis; value engineering; safety and
reliability through design projects; manufacturing processes; assembly techniques; material
handling methods; component and product inspection and testing; factory simulation using
computer techniques; computer database application for manufacturing management and
processing; and design applications using 3-D computer graphics

Manufacturing Technology

Year: 4

This module covers major aspects of manufacturing technology including state-of-the-art for subtractive, additive, casting, and deformation processes. In addition, the module covers the technologies implemented in the integration of various manufacturing processes, thereby promoting a comprehensive understanding of manufacturing systems.

Year five

Renewable Energy & Smart Grids

Year: 5

The module covers theoretical and practical aspects of power systems with a large proportion of decentralised energy production.

Thermal Technologies

Year: 5

Thermal renewable energy technologies are primarily based on combustion or the direct conversion of solar radiation into thermal energy, but also include geothermal heat. They have wider range opportunities than electrical systems due to the widespread demand for low and medium grade heating and cooling in both industrial and domestic situations. This module introduces the students to these concepts and contextualises the issues.

Design and CAE 3

Year: 5

This module is based on the execution of an industrially generated major design project
through multi-disciplinary team activity involving aspects of: project management, market
analysis, specification, concept design, budget costing, decision making, detail design,
production planning, manufacturing requirements and product costing.

Mechanical Science

Year: 5

This module is optional

This module will permit the student to develop their understanding in the scientific and mathematical principles that underpin three areas of mechanical sciences: Strength of Materials and Mechanical vibration theory.

Formal lectures, directed reading exercises, tutorial sessions, informal class quizzes, peer discussion groups, and practical computer laboratory demonstrations will form the learning activities that will lead to the intended learning outcomes.

Learning outcomes shall be assessed by formal in-class test methods throughout the duration of the module and by a final formal examination.

Year six

Final Year Project

Year: 6

Students are required to undertake a major project during the final year of the course. The module offers students an opportunity to develop a realistic and meaningful piece of work during their final year. This module allows a chosen subject area to be researched in depth and a solution developed as a consequence. Students will have the opportunity to integrate and apply the learning achieved from other modules in the course. The module runs during both semesters and allows students to develop a comprehensive approach to all aspects of working on a large project. The project encourages innovation and creative thinking in the development of the solution. It also develops the entrepreneurial mindset, which can influence the challenges undertaken and final decisions made.

Power Systems Analysis

Year: 6

This module is optional

This module covers the principle concepts of analysis and protection of modern power systems. It builds upon the operation of power systems under normal operations, fault analysis and principle of power system protection.

Standard entry conditions

We recognise a range of qualifications for admission to our courses. In addition to the specific entry conditions for this course you must also meet the University’s General Entrance Requirements.

A level

You will normally be in full-time employment in an engineering capacity regarded as satisfying the industrial training requirements of the equivalent full-time courses. You should have attained a high level of performance in a Higher National Diploma/Higher National Certificate in an appropriate engineering subject, or a Bachelor of Technology degree, or hold an equivalent qualification e.g. Foundation Degree.

You will be required to satisfy the Course Committee that you have the support of your employer for release to attend the courses.

Please check the GCSE requirements below for entry to this course.

GCSE

GCSE (or equivalent) profile to include minimum of Grade C or above in Mathematics and English Language.

The Faculty of Computing, Engineering and the Built Environment does not accept students with Essential Skills in Application of Number as the only mathematics qualification. Please contact the Admissions Office directly if you have a query concerning this matter:

T: +44 (0)28 7167 5678

E: admissionsmg@ulster.ac.uk

English Language Requirements

English language requirements for international applicants
The minimum requirement for this course is Academic IELTS 6.0 with no band score less than 5.5. Trinity ISE: Pass at level III also meets this requirement for Tier 4 visa purposes.

Ulster recognises a number of other English language tests and comparable IELTS equivalent scores.

Exemptions and transferability

Transfer between this course and other similar courses within the Faculty of Computing, Engineering and the Built Environment may be possible on the basis of academic performance.

Exemption from parts of the course may be considered based on appropriate performance in a related, designated course or other approved experiential learning (APEL).

The course has been designed to enable students who graduate with a good honours degree to apply for postgraduate study towards a PhD, MSc, MRes or other higher qualification.

Careers & opportunities

Career options

Job prospects in a wide range of engineering industries are excellent with the majority of graduates finding employment within six months of graduation. Graduates with BEng Hons, first class or upper second class award all satisfy the requirements for a wide range of postgraduate research posts and scholarships.

Professional recognition

Institution of Mechanical Engineers (IMechE)

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer.

Apply

Start dates

  • September 2024

Fees and funding

Module Pricing

The price of your overall programme will be determined by the number of credit points that you initiate in the relevant academic year.

For modules commenced in the academic year 2024/25, the following fees apply:

Fees
Credit Points NI/ROI  Cost GB Cost International Cost*
120
£4,750
£9,250
£16,320
60
£2,375
£4,625
£8,160
30
£1,187
£2,312
£4,080
20
£792
£1,542
£2,720

NB: A standard full-time undergraduate degree is equivalent to 120 credit points per year.

*Please note our on campus part-time undergraduate courses are not open to international (non-EU) students.

Additional mandatory costs

It is important to remember that costs associated with accommodation, travel (including car parking charges) and normal living will need to be covered in addition to tuition fees.

Where a course has additional mandatory expenses (in addition to tuition fees) we make every effort to highlight them above. We aim to provide students with the learning materials needed to support their studies. Our libraries are a valuable resource with an extensive collection of books and journals, as well as first-class facilities and IT equipment. Computer suites and free Wi-Fi are also available on each of the campuses.

There are additional fees for graduation ceremonies, examination resits and library fines.

Students choosing a period of paid work placement or study abroad as a part of their course should be aware that there may be additional travel and living costs, as well as tuition fees.

See the tuition fees on our student guide for most up to date costs.

Contact

We’d love to hear from you!

We know that choosing to study at university is a big decision, and you may not always be able to find the information you need online.

Please contact Ulster University with any queries or questions you might have about:

  • Course specific information
  • Fees and Finance
  • Admissions

For any queries regarding getting help with your application, please select Admissions in the drop down below.

For queries related to course content, including modules and placements, please select Course specific information.

We look forward to hearing from you.


For more information visit

Disclaimer

  1. We prepare our prospectus and online information about our courses with care and every effort is made to ensure that the information is accurate. The printed version of the prospectus is, however, published at least a year before the courses begin. Information included in the prospectus may, therefore, change. This includes, but is not limited to changes to the terms, content, delivery, location, method of assessments or lengths of the courses described. Not all circumstances are foreseeable, but changes will normally be made for one of the following reasons: 
    • to meet external, professional, or accredited body requirements;
    • to provide for exceptional circumstances due to reasons beyond our reasonable control;
    • to improve or enhance your experience, or to adopt changes recommended in student feedback, with the aim of improving the student experience and or student outcomes; and/or
    • to ensure appropriate academic standards are met, for example in response to external examiners feedback.
  1. If there are insufficient enrolments to make a course viable, it may be necessary for the University to withdraw a course. If you have received an offer for a course that we subsequently have to close, we will contact you as soon as possible to discuss alternative courses. If you do not wish to study any alternative courses at the University, you may withdraw your application by informing us by email to admissions@ulster.ac.uk.
  1. Please note that the University’s website is the most up-to-date source of information regarding courses, campuses and facilities and we strongly recommend that you always visit the website before making any commitments.
  1. We will include a durable PDF when we send you an offer letter which will highlight any changes made to our prospectus or online information about our courses. You should read this carefully and ensure you fully understand what you are agreeing to before accepting a place on one of our courses.
  1. The University will always try to deliver the course as described in the durable PDF you receive with your offer letter.
  1. At any point after an offer has been made, students will be notified of any course changes in writing (usually by email) as soon as reasonably practicable and we will take all reasonable steps to minimise their impact where possible.  The University will, where possible and reasonably practicable, seek the express consent of the student in regard to any changes concerning material or pre-contract information.
  1. The University website will be updated to reflect the changed course information as soon as reasonably practicable.
  1. If, after due consideration, you decide that you no longer want to study your course or to study at the University, because of the changes, you may withdraw your application or terminate your contract with the University. In order to do so, you should notify us in writing by emailing admissions@ulster.ac.uk (and update UCAS if applicable). We will, on request, recommend alternative courses that you could study with us, or suggest a suitable course at an alternative higher education provider.
  1. If you do not agree that the changes are fair, you can seek redress under the Student Complaints Procedures.
  1. Providing the University has complied with the requirements of all applicable consumer protection laws, the University does not accept responsibility for the consequences of any modification, relocation or cancellation of any course, or part of a course, offered by the University. The University will give due and proper consideration to the effects thereof on individual students and taken the steps necessary to minimise the impact of such effects on those affected.
  1. The University is not liable for disruption to its provision of educational or other services caused by circumstances beyond its reasonable control providing it takes all reasonable steps to minimise the resultant disruption to such services.
  1. Further information can be found in our terms and conditions.

Sustainability at Ulster

Ulster continues to develop and support sustainability initiatives with our staff, students, and external partners across various aspects of teaching, research, professional services operations, and governance.

At Ulster every person, course, research project, and professional service area on every campus either does or can contribute in some way towards the global sustainability and climate change agenda.

We are guided by both our University Strategy People, Place and Partnerships: Delivering Sustainable Futures for All and the UN Sustainable Development Goals.

Our work in this area is already being recognised globally.  Most recently by the 2024 Times Higher Education Impact rating where we were recognised as Joint 5th Globally for Outreach Activities and Joint Top 20 Globally for Sustainable Development Goal 17:  Partnership for the Goals.

Visit our Sustainability at Ulster destination to learn more about how the University strategy and the activities of Ulster University support each of the Sustainable Development Goals.